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INTRODUCTION

The dynamic response of large structural systems
is often analyzed using component mode synthesis (CMS)
techniques. CMS is widely accepted for predicting
coupled system response with increased modeling effi-
ciency and flexibility over conventional methods. CMS
technifues utilize a reduced set of component modes
to characterize the overall system behavior. However,
the inability to adequately model the connections
between components has limited the application of CMS,
Connections between structural components, and between
components and ground are often mechanically complex
and difficult to accurately model analytically. The
modeling of these connections can profoundly influence
predicted system behavior. This is because only the
connections determine the boundary conditions which are
imposed upon the system components. Thus, improved
analytical models for connections are needed to extend
the applicability of CMS and to improve system dynamic
predictions.

Parameter identification (PID) techniques can be
used to improve predicted response when experimental
data are available. Modeling accuracy is improved
with PID by reducing discrepancies between the meas-
ured characteristics of a physical system with those
predicted by an analytical model of the system. Many
techniques are available to carry out this process of
parameter refinement. Most involve the determination
of a set of structural parameters which optimally min-
imize differences between experiment and analytical
prediction.

This study explores combining CMS and PID methods
to improve the analytical modaling of the connections
in a component mode synthesis model. The approach
involves modeling components with either finite ele-
ments or experimental modal data and then joining the
components with physical connecting elements at their
interface points. Interface connections in both the
translational and rotational directions are addressed.
Once the system model is derived, experimentally meas
ured data is used with PID methods to improve the
characterizations of the connections between compo-
nents. Corrections in the connection properties are
computed in terms of physical parameters. With this
approach, the physical characteristics of the connec-
tions can be better understood, in addition to provid-
ing improved input for the CMS model.

The identification of connection characteristics
is simplified by requiring individual components to be
verified before they are incorporated into the coupled
system model. This requirement will normalily not pre-
sent any difficulties, since component testing and
verification has become a regular practice. With this
requirement, the components are verified before they
are used in the coupled system model. Any differences
between the measured and predicted coupled system

response can be solely attributed to inaccuracies of
the estimated properties of the connections. Also,
the quantity of test data that must be obtained from
the coupled system is greatly reduced. This is par-
ticularly useful when it is impractical to obtain a
complete set of vibration test data for a coupled
Structure. Examples, include large space structures,
spacecraft systems, and turbomachinery.

Component Coupling Procedure

Numerous variations of the CMS method are cur-
rently available for the dynamic analysis of coupled
structural systems (1 to 3). In the classical CMS
approach, all of the system components are character-
ized in the modal domain using their respective modal
parameters {frequencies and mode shapes). Coupling
between components also is performed in the modal
domain through use of modal constraints. These con-
straints are derived from displacement compatibility
conditions existing at the component interface loca-
tions. With the classical CMS approach, any compo-
nents or connections that have been modeled in terms
of physical coordinates (e.g., finite elements) must
be transformed into the modal domain before they can
be included in the coupled system equations of motion.
The system equations, in terms of modal coordinates,
are used to compute the system natural frequencies.
The system mode shapes are computed by transforming
the mode shapes obtained from the system equations
back to physical coordinates.

Recent applications of the CMS method have
shifted from the classical approach of utilizing only
modal coordinates. Instead, techniques that use a
mixture of both modal and physical coordinate systems
have been implemented (3). There are several reasons
for the shift to a "mixed" coordinate set. One reason
is that a combination of component types can be incor-
porated into the coupled system equations without
requiring all of the components to be in identical
coordinate systems. This is particularly useful when
some of the components have been modeled using F.E.
methods and other component models have been derived
from modal test data. In most of the currently used
CMS methods boundary degrees of freedom of all of the
components are expressed in terms of physical coordi-
nates, and the internal degrees of freedom are expres-
sed in either modal or physical coordinates. The
inherent efficiency of the component representation is
retained. With physical boundary coordinates, compo-
nents can be coupled utilizing classical direct stiff-
ness assembly techniques as in conventional F.E,
computer codes. Furthermore, nonlinear connecting
elements can be used when boundary degrees of freedom
are in physical coordinates. In the classical CMS
approach, where modal coordinates are used, it is very
difficult to incorporate nonlinearities into the cou-
pled system model because of the difficulties associ-
ated with defining modal parameters for nonlinear
elements,



This study develops a simplified variation of the
previously mentioned procedures for CMS. The proce-
dure is defined to be compatible with PID procedures
which will be used subsequently for identifying the
component interface characteristics. The modal compo-
nents are first converted to "pseudo" finite elements
to connect modal components to physical finite element
components. The pseudo elements are then treated in
the same manner as conventional finite elements, i.e.,
system property matrices are assembled through direct
stiffness techniques.

Consider the system shown in Fig. 1. This system
is comprised of two components which are coupled by a
physical connecting component. The undamped, free
vibration equation of motion for the uncoupled system
is written in terms of physical coordinates as:
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where [M] and [K] are the component system mass and
stiffness matrices, and (U} and {u} are the vectors of
component nodal accelerations and displacements {the
superscripts refer to the component identification).
Equation (1) can further be partitioned by separating
displacements internal to the components from those
that are at the interfaces between components. When
this is done Eq. (1) is written as:
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The coupled system equation is obtained by applying the
displacement compatibility conditions at the interface
between the components and the connections. The dis-
placements of the component and the connection must be
equal at the interface therefore:
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Using Eq. (3), the transformation matrix, [T], which
relates the dependent and independent displacement
sets is:
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From conservation of energy principles and the above
transformation, the coupied equation of motion is
found from:
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Substituting the property matrices from Eq. {2) into
Eq. (5) the coupled equation of motion is:
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The procedure outlined above can be used to couple any
number of physical components into the system equat-
ions. As mentioned previously, when modal components
are to be coupled into the system model they are con-
verted to pseudo physical components and then are
treated in the same manner as conventional physical
components. The pseudo physical property matrices are
obtained from orthogonality relationships between the
property matrices and the modal parameters. When the
component mode shapes are normalized so that the modal
mass matrix equals the identity matrix, the modal and
physical property matrices are related by:
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and

[617IKICe] = ] (7)

where [M] and [K] are the component physical mass and
stiffness matrices, f\wg\] are the component freg-
uencies, and [¢] is the matrix of component mode
shapes.




When experimental modal data is used to charac-
terize the component, the matrix [¢], containing the
component mode shapes may be rectangular. If "m" mode
shapes are measured, and the value of the mode shapes
are recorded at "n" different physical locations on
the component, then the mode shape matrix will be of
order n x m, Normally, there will be more measure-
ment locations available than there will be modes that
can be measured. To obtain a square modal matrix from
experimental mode shape data, data at some measurement
points can be neglected so that the number of points
is equal to the number of modes. When data at measure-
ment points is discarded no information is lost as far
as the overall system response is concerned, so long
as measurements at the component's interface points
are retained. Once a square mode shape matrix is
available, the pseudo physical property matrices are
related to the modal data by:
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where [Mp} and [Kp] are the component pseudo mass and
stiffness matrices. (The coefficients of the mass and
stiffness matrices are in terms of physical coordinates
corresponding to the location and direction where the
mode shapes are measured).

The matrices computed in Eq. (8) are designated as
pseudo matrices because their physical interpretation
is unlike that of conventional mass and stiffness
matrices. Because it is impractical to measure all of
the component modes, the modal data will be incomplete
(see (4)) and will not contain all the information
required to produce the actual component mass and
stiffness matrices. Therefore, although the mass and
stiffness matrices computed in Eq. (8) are in terms
of physical rather than modal coordinates, the matri-
ces will not necessarily represent the actual physical
mass and stiffness characteristics of the component.
The mass and stiffness matrices from Eq. (8) will
reproduce the measured frequencies and mode shapes,
and will be suitable for representing the component
in the coupled system model.

Either the "free" or the "fixed" boundary compo-
nent modes can be used for the component character-
ization. The "free" mode shapes are those modes that
correspond to the component when it is in the uncon-
strained or free boundary condition. In many situ-
ations these modes are more conveniently obtained
than the fixed boundary modes. This is particularly
true when the modes are measured experimentally,
because the component itself does not have to be phys-
ically constrained during the experimental testing.

In practice, the free boundary condition often is
approximated by suspending the component from flexible
cords or by supporting it on soft springs.

The fixed modes are obtained by simultaneously
constraining all of the component's boundary degrees
of freedom while performing the modal testing. Ana-
Tytically, the fixed modes are computed as easily

as the free modes. Experimentally, they are more dif-
ficult to obtain, because all of the component's
boundary degrees of freedom must be fully constrained
during the experiment, To attain this condition
requires that elaborate fixtures be attached at the
components boundary locations, and in practice, full
constraint is never completely achieved. Another dif-
ficulty of using fixed boundary mode shapes is that an
additional set of "static" deflection or constraint
modes must be added to the set of fixed boundary modes.
These modes are required so that the component will
have flexibility at its boundary locations where it

is connected to adjacent components.

Normally, the values of the experimental mode
shapes are measured in the translational directions.
It is not generally practical to measure the values of
the mode shapes in the rotational directions because
of limitations in available instrumentation. However,
it is sometimes desirable to couple rotational degrees
of freedom between components. If the values of the
mode shapes are not measured in the rotational direc-
tions, the pseudo matrices will only have transla-
tional degrees of freedom and there will not be means
of coupling the rotational connecting stiffnesses. To
circumvent this difficulty, the rotational values of
the mode shapes can be extrapolated from the transla-
tional values, either by curve fitting through the
translational degrees of freedom and then computing
the slope of the curve at the connection location, or
by using an approximate F.E. model of the component
(see [(j)

When the rotational values are extrapolated from
a curve fit any existing rotational inertia effects
will not be reflected in the values of the rotations.
Neglecting the actual independent motion of the rota-
tion implies that there is no rotational inertia and
that the rotations are dependent on the translations.
Because of this dependence, the combined translational/
rotational mode shapes can not be used directly to
compute the pseudo matrices without encountering numer-
ical problems during the matrix inversions in Eq. (8).
A solution to this difficulty is to initially use
only the translational mode shapes to compute the
pseudo matrices. Then, a transformation which is
based on the dependence between the rotations and
translations is used to transform the pseudo matrices
from the translational coordinate system to a com-
bined translational/rotational system.

The dependent rotational values of the mode
shapes can be related to the independent translations
by:

n
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Where Ue. is the dependent rotation at j, UAi are

J
the translations at the independent measurement points,
aj are the coefficients relating the independent
translations to the dependent rotations (determined
from curve fit, etc.), and n s the number of
independent measurement points.

The transformation from the mixed coordinate
matrices to the entirely translational pseudo property
matrices is:
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where [T'] is the transformation matrix derived from
the relationships in Eq. } and {u,}' is a subset of
For each rotat10na1 degree o? freedom that is

éed in {ug}, a translational degree of freedom is
removed from {up}'. The selection of the trans-
Tational degrees of freedom that are removed is arbi-~
trary, and since a translation is removed for each
rotation that is added, both systems will contain the
same number of degrees of freedom.

Using the original translational pseudo property
matrices from Eq. (8), the transformation in Eq. (10),
and principies of conservation of energy, the pseudo
matrices are derived in the combined translational/
rotational coordinate system by:
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Once the component pseudo matrices in Eq. (11) are

computed, they can be inserted into the system equa-
tions of motion and coupled to adjacent components
using the previously discussed procedures.

The final coupled system equations can be used
to predict the overall system dynamic characteristics.
The frequencies that are computed from this equation
will correspond to the overall system resonances. The
accuracy of the predicted frequencies will be depend-
ent on the precision with which the connections between
components have been modeled. It has been assumed
that the component modal models have been verified
and are accurate, and also, that the proper component
modes have been included in the model to adequately
predict system response (see sample problem one).

The mode shapes derived from the system equations
will correspond to the physical degrees of freedom
included in the system model. When the combined
translational/rotational model is used some of the
mode shape values will correspond to translational
degrees of freedom and some to rotations. The accu-
racy of the mode shapes, like the frequencies, will
be dependent on the adequacy of the component modal
representations and the modeling of the connections.

Parameter ldentification Procedure

Once the system equations of motion and their
corresponding frequencies and mode shapes are computed,
and the experimental system modes have been measured,
PID can be used to find an improved set of connection
parameters that better predict the measured experimen-
tal system data. For this study the Weighted Least
Squares method for parameter estimation is used (6).

If (T} and {c} are vectors containing the measured
and computed system frequencies and mode shapes respec-
tively, then the weighted squared difference between
the predicted and measured characteristics is:

2
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where [W] is the weighting matrix and {F} is a vector
of weighted squared differences. To find the set of
connection parameters that minimizes the weighted
squared differences, the derivative of (F} with respect
to the connection parameters is set to zero. Noting
that the predicted characteristics {c}, are a func-

tion of the connection parameters {r}, the deriva-
tive of (F} is written as:
a{F} _ = 3{c} _ 13
o = WI0E - te)) S = 10 (13)

Expanding {c} in a Taylor series and truncating higher
order terms, {c} is approximated as:

est * :fgi tar} (14)

{c}t = {c}

Where (ar} are the differences between the estimated
and actual values for the connection parameters.
Substituting Eq. (14) into Egq. (13) and letting
alci/a{ri=[S] leads to:

WI(©) - o1 gy - [S1Hary)[S] = 10} (15)

From Eg. (15) it is desired to solve for {ar} so that
the actual connectijon parameters can be determined.
Solving for {ar} can not be accomplished by simple
inversions, however, because in general the number of
measured and predicted characteristics will be greater
than the number of connection parameters, rendering
the matrix [S] to be nonsquare. The vector {ar} can
be fo1ved for if Eq. (15) is first premultiplied by

] When this is done, {ar} is solved as:

-1
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An updated set of connection parameters is computed by:
{ry = {riger + {ar} (17

or by substituting from Eq. (16):
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Since {c} is approximated by a truncated series,
the improved connection parameters will be only an
approximation to the final parameters., However, the
final parameters can be obtained by jterating on
Eq. (18).

A direct approach for computing the elements of
the sensitivity matrix [S] is to perturb the analyti-
cal model with changes in the connection parameters,
and then compute the resulting changes in the system
characteristics. The elements are then computed by
setting Tij equal to the change in the c¢i charac-
teristic divided by the change in the rj connection
parameter. Alternative methods for computing these
derivatives have been presented (see (7)) but for
problems such as the example, with only a small number
of connection parameters, the above method is adequate.

The selection of the system characteristics that
are used in the estimation procedure is determined by
data acquistion capability. Experimentally, it is
generally easier to measure frequencies than mode
shapes, so in many cases it may be practical to include
more frequencies than modes shapes. Characteristics




other than frequencies and mode shapes also can be
utilized; in (8), it is suggested that kinetic energy
may be a usefuT characteristic. Once the characteris-
tics are chosen, the weight that is placed on each
characteristic must be determined. If one character-
istic is measured more accurately than another, then
it can be weighted more heavily.

When the number of system characteristics is
large, the size of the weighting and sensitivity mat-
rices increases, and the matrix in £q. (18) may become
i11 conditioned for inversion (see (9)). The PID
procedure only requires a minimum number of system
characteristics to adequately identify the connection
parameters since each component has already been veri-
fied. Therefore, the size of the matrices in Eq. (18)
will be kept small and inversion problems will be min-
imized. Another problem may arise when the analytical
model cannot be exactly made to fit the experimental
data. When this is the situation the set of connec-
tion parameters that minimizes the differences, rather
than eliminates them, must be used. The model may not
be able to produce the desired measured system charac-
teristics because of limitations in the component
modal representation. Also, if the experimentally
measured modes are not orthogonal, perfect agreement
can never be achieved because the analytical model can
only produce orthogonal mode shapes.

Sample Problem One: Coupled Beams

The following sample problem is offerred to dem-
onstrate the component coupling and parameter identi-
fication procedures. To verify these procedures
simulated experimental data generated from a F.E.
model was used. The sample problem (Fig. 2) is com-
prised of two simply supported beams connected at
their ends. For simplicity, both beam components
were made identical. In actual applications the sys-
tem can be partitioned into any set of components
that is desired. Each of the components in this
problem are discretized into seven massless, planar
beam elements. Concentrated translational masses are
added between the elements at nodes 2 through 7 and
10 through 15. The components are connected by a
rotational spring (K = 10.E5) at nodes eight and nine.
A connection also is made to ground by a rotational

spring (K = 10.E5) added to the second component at
node 16,

The accuracy of the computed system frequencies
as a function of the number of modes used for the com-
ponent representations was evaluated with six, four,
and two component modes (see Table I). Both the six
and four component mode representations produced sys-
tem freguencies that are in good agreement with the
baseline F.E. solution. Although there are only six
component modes in the F.E. solution, the six mode
representation does not produce exact frequencies
because the F.E. model has more than 6 degrees of
freedom. The two mode representation allows for the
first and third modal frequencies to be predicted sat-
isfactorily but does not provide enough information
for an accurate prediction of the second and fourth
frequencies. At least two component modes are required
so that there will be a rotational degree of freedom
at each end of the component that is cannected to
ground (only one mode is needed for the other compo-
nent). In every case the component mode solution
produced frequencies that are higher than the baseline
frequencies. This is understandable since the compo-
nent mode solution uses a truncated set of modes and
therefore does not include all of the component's
flexibility.

For the initial attempt at identifying the con-
nection properties, only the simulated system frequen-
cies from the F.E. model (Table II) were used in the
parameter identification routines. It is preferable
that the connection properties be identified without
having to use system mode shapes because the mode
shapes are considerably more difficult to experimen-
tally measure than the frequencies. When either six
or four component mode representations were used two
possible solutions were found for the K1 and K2 con-
necting stiffnesses which satisfied the system fre-
quency constraints (see Table II). The chosen solution
was dependent on the initial starting estimates for K1
and K2. Although neither solution is equal to the
actual connecting stiffnesses, the first one is rea-
sonably close considering the 1imited number of system
data used and the approximation of the component modal
representation. When either of the solutions are
input into the F.E. model they produce system frequen-
cies that are very close to the exact frequencies.

The first solution does produce a better set of system
mode shapes. In an actual application, without more
than system frequency information, it would be impos-
sible to determine which of the two solutions is
closer to the actual values of the connecting stiff-
nesses. Furthermore, since both the five and two
system frequency cases produced similar solutions
there is no advantage to using more than two system
frequencies. When two component modes are used a
maximum of four system frequencies are available,
therefore the five system frequency case cannot be
analyzed. For the two component modes and two system
frequency case, the solution failed to converge.

A subsequent attempt, using a combination of
both system frequencies and mode shapes was made with
the expectation that the identification of the connec-
tion properties would be improved. By adding the
first mode shape as a constraint, along with the first
five system frequencies, the second multiple solution
was eliminated. When only one system frequency and
one mode shape was used, the problem still converged
to the first solution regardiess of the initial esti-
mates for the connecting stiffnesses. This combination
of system data is ideal because, while it eliminates
the multipie solution, it only requires a minimal
amount of experimental data. Similar results were
produced for both the six and four component mode
representations, while the two mode representation
continued to present difficulties.

Sample Problem Two: RSD Rig Verification

Once the component coupling and parameter identi-
fication algorithms were evaluated with simulated data
(Sample Problem One), it was decided to assess the
procedures using actual experimental data. To accom-
plish this, the RSD (Rotating Structural Dynamics Rig)
at NASA Lewis Research Center was selected. The RSD
rig (Fig., 3) is designed to simulate engine structures
to study active rotor control and system dynamics
(component interaction) problems. The rig components,
although considerably simpler than a real turbine
engine's, were scaled such that they would simulate an
actual engine's structural dynamics response
characteristics.

The objective of the parameter identification was
to determine the stiffnesses of the squirrel cage bear-
ing support that connects each end of the rotor to the
support frame. To accomplish this, the RSD rig was
divided in two components; the rotor support frame,
and the rotor. Each of these components was charac-
terized verified experimentally, so that accurate
component representations would be available for the



coupled system model. In the system model the support
frame was represented by an experimentally verified
F.E. model while the rotor component was represented by
experimental modal data. Since both components were
experimentally verified, any differences that appeared
between the predicted and measured system characteris-
tics could be attributed to the uncertainties in the
squirrel cage connections between components. This
approach considerably simplified the verification task
by reducing the quantity of modal data required from
the coupled system.

The support frame finite element mesh is shown in
Fig. 4. The frame is mounted on a relatively stiff base
plate so grid points 35 through 39 are fully constrained.
Grid points 19 and 20, where the rotor is attached,
were allowed to freely displace. This free condition
is representative of the conditions used during the
modal tests and is also compatibie with the require-
ments for the component coupling procedure. The grid
points are connected with beam (bending and axial
deformations) elements except for the diagonal elements
at grid 35 which are modeled with rod (axial deforma-
tion only) elements. A1l of the elements are modeled
with A36 steel properties. The frame F.E. model was
analyzed with NASTRAN, to compute the component fre-
quencies and mode shapes (Fig. 5). The frequencies
were experimentally verified by using vibration data
obtained from an HP 5423 Dynamic Analyzer. The rotor
modal representation was obtained by measuring the
rotor mode shapes in the free boundary condition. This
condition was approximated by hanging the rotor from
bungy cords. The component modal characteristics were
generated from transfer function data obtained from the
dynamic analyzer and impact testing. A total of six
rotor modes were measured (see Fig. 6) including two
rigid body and four elastic modes.

The support frame and rotor were coupled by com-
bining the physical F.E. model of the frame with the
modal representation of the rotor. For simplicity the
coupled system model was constrained to motion only in
the vertical plane. This restriction allowed for a
reduction in the required number of degrees of freedom
in the system model and allowed for all of the system
testing to be performed in one plane. The coupled sys-
tem frequencies for the six mode rotor representation
are plotted along with the measured frequencies in
Fig. 7. The predicted frequencies were computed for
different values of squirrel cage stiffness to deter-
mine the effect that the cages have on the system fre-
quencies. To generate these results it was assumed that
both squirrel cages had identical stiffnesses. This was
a rational assumption, since both cages are built to the
same specifications. (Subsequent to this analysis the
cage stiffness was measured as 5050 1b/in. using a
static loading test.)

Only the first three computed system frequencies
are shown because only three frequencies were measured.
When all three frequencies are used the cage stiffness
is identified as 5750 1b/in. This value is in good
agreement with the measured stiffness (5050), consider-
ing that only three system frequencies were used for
the parameter identification. In Fig. 7 it is shown
that this amount of difference in cage stiffness does
not have a significant effect on the system frequencies.

In addition to the six mode rotor representation,
a four and two mode representation were used to deter-
mine the effect that the number of component modes has
on the stiffness identification. The four mode repre-
sentation identified the same cage stiffness as the six

mode representation. The two mode representation iden-
tified the cage stiffness as about 2300 ib/in. or only
46 percent of the measured stiffness. It was expected
that the two mode representation would be insufficient
for identifying the cage stiffness because this repre-
sentation is inadequate for accurately predicting the
system modes. It is obvious that the two mode repre-
sentation cannot produce very good results because
only rigid body modes are included in the representa-
tion, and the system modes involve elastic bending in
the rotor. Although rules of thumb are available for
determining the required number of modes, additional
work is required in this area.

CONCLUSION

From the two sample problems analyzed in this study
it was determined that the stiffness characteristics of
component connections can be identified using component
mode synthesis and parameter identification procedures.
Furthermore, the characteristics can be identified using
experimentally obtained component modal representation
and a minimal quantity of measured system modal data.
In the first sample problem it was found that multiple
solutions are possible, but that they can be avoided
when system mode shapes are included in the identifi-
cation procedure. In the second problem it was found
that the rotor for a rotor/support frame coupled sys-
tem could be adequately represented by experimentally
obtained modal data. It was also found that only three
system frequencies had to be measured for the connec-
tion characteristics between the frame and rotor to be
identified. From the results obtained thus far, it is
determined that the quantity of data required for the
component representations and for the connection char-
acteristic identification is problem dependent. There-
fore, each application must be treated on an individual

basis.
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TABLE 1. - COUPLED SYSTEM FREQUENCIES (SAMPLE PROBLEM ONE)

Ky = kp = 10x105]

{Connection stiffness ORIG!NAL P;“’C— lS
LR
Baseline Number of component modes BER A e
finite- e - OF POCR QUALITY
element 6 4 2
solution,
Hz Component mode synthesis solution
Eigenvalue Frequency, | Eigenvalue Frequency, Eigenvalue | Frequency,
+ percent Hz + percent Hz + percent Hz
4.98x10% (112) | s5.11x10% 14 5.12x104 14 5.25x10° 145
+2 +2 +3
1.07x106 (165) | 1.23x106 177 1.28x108 180 1.57x10% 197
+7 +9 +21
6.99x106 (421) | 7.13x106 425 7.17x108 426 7.54x106 431
+1 +1 +4
9.72x108 (496) | 1.08x107 523 1.09x197 525 1.72x107 561
+ +
3.39x107 (927) | 3.43x107 932 3.44x107 933 [ -
TABLE I1. - COMPUTED CONNECTION STIFFNESS
Number of Number of component modes
system
frequencies 6 4 I 2
Connection stiffness
Ky ko Ky k2 K ‘ k2
5 6.5x10% | 7.4x105 | 6.3x10% | 7.3x10%
(a)
3.7x105 | 13.1x10% | 3.6x10% | 12.5x10°
~N
2 6.7x10% | 7.4x105 | 4.1x10% | 10.8x10° ~—yll
(b)
3.7x105 | 13.4x105 | 5.4x10% | 8.1x10°
a0nly four system frequencies available.
bSolution does not converge. UC, UXJ \ c 11
I° ¥c \—U U
11" Y¢
FIGURE 1.- THREE COMPONENT SYSTEM.
P =10
£ = 1x10°
I =1.0
AL = 1.0
= K, = 10x10°

10 11 12 13 14 15

FIGURE 2.- COUPLED SYSTEM (SAMPLE PROBLEM ONE).
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FIGURE 4.- SUPPORT FRAME F.E. MODEL.




R A3

MODE 1: 35 Hz MODE 2: 41 Hz
MODE 3: 61 Hz MODE 4: 72 Hz
MODE 5: 80 Hz

FIGURE 5.- SUPPORT FRAME MODE SHAPES.
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|

MODE 1: O Hz

MODE 2: 0 Hz

\____/
MODE 3: 141 Hz

MODE 4: 304 Hz

~—_"

MODE 5: 609 Hz

MODE 6: 897 Hz
FIGURE 6.- ROTOR MODE SHAPES.




FREQUENCY. Hz

=== MEASURED SYSTEM FREQUENCIES
gp L — PREDICTED SYSTEM FREQUENCIES
70 b— MODE 3
60
50 e e e e e e e == MODE 2
MODE 1
1000 2500 3750 5050 10 000

SQUIRREL CAGE STIFFNESS. LB/IN.

FIGURE 7.- COUPLED FRAME/ROTOR ANALYSIS (6
COMPONENT MODES).
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